Great Lakes Water Levels and Coastal Impacts

November 2020

Brandon Krumwiede

Physical Scientist / Great Lakes Regional Geospatial Coordinator NOAA Office for Coastal Management

The Coastal Challenge

- Shorelines are naturally dynamic and complex due to the interface between land, water, and air
- Coastal management refers to actions taken to keep residents safe, the economy sound, and natural resources functioning
- Work towards protecting coastal communities

Complexity of Water Levels: Superior

Lake Superior Monthly Water Levels (USACE/NOAA)

Minimum Water Level: 182.72 meters / 599.47 feet (April 1926)

Maximum Water Level: 183.91 meters / 603.37 feet (October 1985)

Difference: 1.19 meters / 3.9 feet

183.88 meters / 603.28 feet (October 2019)

Complexity of Water Levels: Michigan-Huron

Lake Michigan-Huron Monthly Water Levels (USACE/NOAA)

Minimum Water Level: 175.57 meters / 576.02 feet (January 2013) Maximum Water Level: 177.5 meters / 582.35 feet (October 1986) Difference: 1.93 meters / 6.33 feet

177.45 meters / 582.19 feet (June and July 2020)

Complexity of Water Levels: St. Clair

Lake St. Clair Monthly Water Levels (USACE/NOAA)

Minimum Water Level: 173.88 meters / 570.47 feet (January 1936) Maximum Water Level: 176.04 meters / 577.55 feet (July 2019)

Difference: 2.16 meters / 7.08 feet

176.03 meters / 577.52 feet (July 2020)

Complexity of Water Levels: Erie

Lake Erie Monthly Water Levels (USACE/NOAA)

Minimum Water Level: 173.18 meters / 568.17 feet (February 1935)

Maximum Water Level: 175.14 meters / 574.6 feet (June 2019)

Difference: 1.96 meters / 6.43 feet

175.08 meters / 5574.4 feet (May 2020)

Complexity of Water Levels: Ontario

Lake Ontario Monthly Water Levels (USACE/NOAA)

Minimum Water Level: 73.74 meters / 241.92 feet (December 1934) Maximum Water Level: 75.91 meters / 249.04 feet (June 2019)

Difference: 2.17 meters / 7.12 feet

75.36 meters / 247.24 feet (May 2020)

Physical Impacts

- Coastal Flooding
- Shoreline Erosion/Deposition
- Increased sediment transport in the littoral zone
- Alterations to stream and river mouths
- Loss of coastal terrestrial and wetland habitat
- Increased impacts when storms move through

U.S. Great Lakes Shoreline

Shoreline Type	Length (mi)
Elevated Shorelines (Bluffs, Banks, Low Plains)	959.55
Baymouth Barriers	17.79
Fine Sediment Beaches	1172.40
Coarse Sediment Beaches	852.74
Bedrock	1161.50
Wetlands	1381.42
Artificial	1626.08
Unknown	3.07

Source: Summarized from 2019 US Great Lakes Hardened Shorelines Classification Dataset

U.S. Great Lakes Shoreline: Artificial/Hardened

Over 1/5 of the U.S. Great Lakes shoreline is classed as artificial or hardened by coastal infrastructure

Source: 2019 US Great Lakes Hardened
Shorelines Classification Dataset

U.S. Great Lakes Shoreline: Beaches

- Over 16% of the U.S. Great Lakes shoreline is classed as fine sediment beaches
- High concentration in Lake Michigan
- Highly dynamic and susceptible to changes in water levels, storms and longshore (littoral) drift

Source: 2019 US Great Lakes Hardened Shorelines Classification Dataset

U.S. Great Lakes Shoreline: Wetlands

- About 1/5 of the U.S. Great Lakes shorelines are classed as coastal and river mouth wetlands
- These wetland extents are dynamic in response to changes in water levels

Source: 2019 US Great Lakes Hardened Shorelines Classification Dataset

Illinois Beach State Park

Coastal Erosion

Impact to coastal wetlands

Littoral sediment transport

Red - erosion

Blue - deposition

Economic and Social Impacts

- Damage to coastal infrastructure
- Flooded marinas and docks
- Hazards to navigation
- Shrinking beaches for recreational use
- Damage and loss of private property
- Solastalgia distress caused by environmental change*

*Albrecht, Glenn (2007). "Solastalgia: the distress caused by environmental change". *Australasian Psychiatry*. **15**: S95–S98. doi:10.1080/10398560701701288. PMID 18027145

Digital Coast

Data, Tools, Trainings, and Resources

https://coast.noaa.gov/digitalcoast/

Data and Tools to Help Understand Impacts

NOAA's Lake Level Viewer

40% of Coastal Storms Program survey respondents said current data on future lake level changes are inadequate

Only 26% said existing tools to work with or visualize these data are adequate

Source: 2013 Shoreline Change Workshop: Perspectives on the Great Lakes Survey

Great Lakes Coastal Zone Management Programs

Department of State

